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Abstract. For quantum systems in the ground state, thet-expansion technique is used to
construct a canonical sequence of classical theories. The consequent application of the coherent-
anomaly method provides an estimation of the non-classical values of critical indices related to
the singular behaviour of the ground-state energy. The accuracy of the results is tested on the
Ising model with a transverse field, formulated on two- and three-dimensional lattices.

1. Introduction

Critical phenomena remain one of the most important topics in quantum and statistical
mechanics. Subjects like universality breaking in some low-dimensional systems and the
possibility of the restoration of universality below the upper critical dimension, the effect
of randomness on the critical behaviour, etc, are still obscured in many relevant aspects.
The greatest progress in studying non-integrable systems has been made by numerical
methods, in particular the Monte Carlo simulations, the finite-size-scaling method and
the extrapolation of low-temperature (weak-coupling) or high-temperature (strong-coupling)
series into the critical region. Their common negative features are the laboriousness,
the large amount of computer time needed even for a small system size, the application
of specific algorithms in dependence on the particular family of models (e.g. the series
expansions are done up to a sufficiently high perturbation order only for a few quantum
Hamiltonians which symmetries allow for a simple graphical representation of series
contributions), the uncertainty of qualitative predictions because of the entirely numerical
character of the methods. It is therefore desirable to develop alternative analytic closed-
form approaches based on physical considerations and self-consistency requirements, if
need be in combination with series expansions within a variational format. However, such
methods provide, at each approximation level, the classical critical description of systems
with classical values of critical indices independent of dimension.

The problem of the restricted classical description is unravelled in the coherent anomaly
method (CAM) [1] (for a recent review, see [2]). The main tool of the CAM is a successive
sequence of classical-type theories which is canonical, i.e. gives critical points converging
to the exact one. The non-classical corrections to the classical values of critical indices are
deduced from a successive growth of prefactors to the corresponding (classical) singular
parts of quantum or statistical quantities. The canonical series of approximations were
practically generated within various cluster theories [3–5] (by increasing the cluster size,
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with a fixed number of effective fields) or alternative multi-effective-field schemes [6] (by
varying the set of multi-body effective fields inside one fixed cluster).

This paper deals in the above spirit with the non-classical critical phenomena of quantum
lattice models in the ground state. As the method of constructing a canonical sequence of
approximations we use the non-perturbativet-expansion technique [7–10]. The last is close
to the standard variational method, and improves the choice of a trial wavefunction by letting
it evolve in timet ; the t-expansion has been applied mostly to the calculation of molecule
spectra and quite recently to the antiferromagnetic regime of the spin-1

2 Heisenberg model
[11]. The essential practical advantage of the generated canonical series, which falls into
the cluster-expansion category, is that one can obtain higher-level approximations relatively
easily.

To accomplish our program, we proceed in three steps:
(i) The ambiguous part of thet-expansion technique is the extrapolation of the small-t

series expansion to asymptotically larget ; a summary of the known extrapolation procedures
is given in [9]. We have observed that while the value of the ground-state energy depends
negligibly on the type of extrapolation, the critical description is always inadequate—the
generated series of approximations even lose the canonicality. That is why we propose a
new extrapolation scheme, an improved version of the Stubbin’s inverse method [9], which
keeps all the required analytic properties of thet-expansion and gives reliable critical data
(section 2).

(ii) We define precisely how the trial function controls the phases, and extract explicitly
the leading term of the classical singular behaviour of the order parameter and of the
susceptibility around the critical point (section 3).

(iii) As a test model we present the quantum Ising model in a transverse field (TIM),
formulated on two-dimensional (2D) and three-dimensional (3D) lattices. The estimates of
the critical point and of the non-classical values of critical indicesβ, γ, obtained by using
the CAM, are consistent with the most reliable series results (section 4).

2. A sketch of thet-expansion method

The t-expansion technique [7] is based on the following theorem: for any trial ket|φ〉 which
has non-zero overlap with the exact ground-state|0〉 of a quantum system characterized by
HamiltonianĤ , the state

|φt 〉 = 1

〈φ|e−tĤ |φ〉1/2 e−tĤ /2|φ〉 (2.1)

is a better approximation to|0〉 for any positivet and it tends to|0〉 in the limit t → ∞.
Consequently, the function

E(t) = 〈φ|Ĥe−tĤ |φ〉
〈φ|e−tĤ |φ〉 =

∞∑
n=0

(−t)n
n!

In+1 (2.2)

converges to the ground-state energyE0 at asymptotically larget . Here, the coefficientsIn,
referred to as connected moments, are recursively defined by

I1 = 〈φ|Ĥ |φ〉

In = 〈φ|Ĥ n|φ〉 −
n−2∑
p=0

(
n− 1

p

)
Ip+1〈φ|Ĥ n−p−1|φ〉 n > 2.

(2.3)

They are size-extensive, i.e. for a large system ofN units In scales likeN . Since the
derivative ofE(t) with respect tot is equal to the negative of the expectation value of
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(H − 〈φ|H |φ〉)2, E(t) decreasesmonotonouslyfrom its initial (variational) valueI1 > E0

to E0 at t →∞, i.e. for any finitet , E(t) is an upper bound forE0.
In general, one can compute exactly only the first few coefficients{In} of the small-t

expansion (2.2). A non-trivial task is then to ‘guess’ the large-t behaviour ofE: the set of
free parameters in a suggested extrapolation formula is determined uniquely by comparing
with (2.2) up to the given power oft . Various extrapolation schemes were examined, like the
Pad́e and D-Pad́e approximants [7], connected-moments expansion (CMX) [8], extended-
connected-moment expansion, Laplace and inversion methods [9]. The extensively used
CMX method represents e.g. a finite-L truncation(L = 0, 1, . . .) of an infinite series of
exponentials,

E(t) = E0+
L∑
n=1

Ane
−t/αn . (2.4)

The corresponding estimate of the ground-state energy densityE = E0/N is given by

E2L+1 = 1

N
(I1−XLT

−1
L XT

L) (2.5)

whereXL is the vector(I2, . . . , IL+1) andTL the matrix with elements(TL)ij = Ii+j+1

(i, j = 1, . . . , L); explicitly,

E1 = 1

N
I1 (2.6a)

E3 = 1

N

(
I1− I

2
2

I3

)
(2.6b)

etc. The subscript ofE denotes the approximation order = the number of the highest
connected moment involved in the calculation of the ground-state energy. We have observed
in our computations that while the value of approximativeE depends only slightly on the
type of extrapolation, the description of critical properties of the system in the ground state
(based on the response ofE under an infinitesimal change of the trial wavefunction|φ〉—see
the next section for an explanation) is very sensitive on the choice of extrapolation. From
this point of view, all known methods give unstable and poorly convergent results. Here,
we propose a new extrapolation scheme, a version of the inverse method [9], which keeps
the relevant analytic properties of the plotE(t) and gives quickly convergent and adequate
critical data.

Let us first suppose that the monotonous decay ofE(t) from I1 to E0 is given by the
only exponential in (2.4):

E(t) = E0+ (I1− E0)e
−t/α. (2.7)

Then, the inverse function reads

t (E) = −α ln

(
E − E0

I1− E0

)
(2.8)

and its derivative
dt

dE
= − α

E − E0
(2.9)

exhibits a simple pole just atE = E0. The r.h.s. of equation (2.9) is nothing but the leading
term of the Laurent series expansion of the true dt/dE aroundE = E0, written as

dt

dE
= − α

E − E0
+
∞∑
n=0

cn+1

n!
(E − E0)

n (2.10)
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so that

t (E) = −α ln(E − E0)+
∞∑
n=0

cn

n!
(E − E0)

n. (2.11)

Let us now consider a finite truncation of (2.11):

t (E) = −α ln(E − E0)+
L−3∑
n=0

cn

n!
(E − E0)

n. (2.11′)

TheL unknown parametersE0, α, {cn}L−3
n=0 are determined by comparing the values oft (E)

and of its first(L− 1) derivatives with respect toE at pointE = I1, expressed in terms of
the connected moments by inverting relation (2.2)

t (E = I1) = 0

dEt (E = I1) = − 1

I2

dEEt (E = I1) = I3

I 3
2

d
(3)
E t (E = I1) = I2I4− 3I 2

3

I 5
2

(2.12)

etc, with those yielded by (2.11′). The resulting set of equations

0= −α ln(I1− E0)+
L−3∑
n=0

cn

n!
(I1− E0)

n

dEt (I1) = − α

I1− E0
+

L−4∑
n=0

cn+1

n!
(I1− E0)

n

...

d
(L−3)
E t (I1) = (−1)L−3 α(L− 4)!

(I1− E0)L−3
+ cL−3

d
(L−2)
E t (I1) = (−1)L−2 α(L− 3)!

(I1− E0)L−2

d
(L−1)
E t (I1) = (−1)L−1 α(L− 2)!

(I1− E0)L−1

(2.13)

implies the ground-state energy density of the form

EL = 1

N

[
I1+ (L− 2)

d
(L−2)
E t (I1)

d
(L−1)
E t (I1)

]
. (2.14)

Sinced(n)E t (I1) scales likeN−n (see equations (2.12)),EL is size-intensive as was expected.
In the lowestL = 3 order, we recover the CMX result (2.6b). However, while in higher
truncation orders the CMX theory fits the decay ofE(t) by a linear combination of several
exponentials, our method corresponds to a polynomial ‘deformation’ of one exponential.
Since dt/dE has just one simple pole by construction, the monotonous decay ofE(t) to
E0 at t → ∞ is automatically ensured at every truncation level (in contrast to the CMX
approach where someA’s in (2.4) can be negative). The fundamental difference between
the presented and the original [9] inverse methods is that here the inverse functiont (E) is
uniquely built aroundE = I1, and not aroundE = 0 which leads to an ambiguous choice
of the polynomial branch.
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3. General description of critical properties

The connected moments{In}, and consequently the value ofEL for finite L, depend on
the choice of the trial function|φ〉, besides an evident dependence on a complete list of
Hamiltonian’s parameters denoted by{J }. For lattice spin-12 systems we shall concentrate
on, the set of trial functions will be parametrized by some free gauge parameterφ (the
extension of the formalism to higher spins requiring the introduction of more gauge
parameters is straightforward). The trivial lowest-order estimate (2.6a),E1 = I1({J }, φ)/N ,
is the basic formula of the ordinary variational method, withE1 being a rigorous upper
bound for the trueE . The ‘best’ value ofφ is thus determined by the stationarity condition
∂E1/∂φ = 0; from all solutions to this condition the accepted (physical) oneφ̄ provides the
minimum of E1.

In higher L-orders of an extrapolation scheme, the corresponding estimates of the
ground-state energy densityEL({J }, φ) are not rigorous upper bounds for the trueE . But
one can still formulate a natural extension of the variational method using the following
arguments. It is clear that if the limit limL→∞ EL exists, then it does not depend on the
gaugeφ. On the other hand, the way in which the series approaches its limiting value
certainly does. This is the main point: we have to chooseφ such that it makes the series
properly convergent. It turns out that for a fixed set of model’s parameters{J } there exists
a region of moderate values ofφ in which EL, as a function ofφ, exhibits a plateau, while
outside of this interval it oscillates with a growing amplitude—the sign of the loss of series
convergence. In order to restore at least the ‘local independence’ on the gauge parameter,
we impose the stationarity condition

∂

∂φ
EL({J }, φ) = 0 (3.1)

taken as an implicit definition ofφ as a function of Hamiltonian’s parameters. From all
roots to (3.1) localized in the above-mentioned interval of well-behavedφ, S = {φi}, we
choose the solution,̄φ, which provides the minimum forEL:

EL({J }) = EL({J }, φ̄L) = min
φi∈S
EL({J }, φi). (3.2)

We shall callφ̄L({J }) the physical solution to the stationarity condition (3.1).
For a givenL, the closed-form approximation,EL, represents a classical-type theory.

The phase transitions and the critical behaviour are governed by the singularities ofφ̄L
which plays the role of an effective field. Like for instance, a first-order phase transition
takes place when, by changing the model’s parameters, the role of the physical stationarity
solution is transferred from one root,φ1, to the other,φ2, such thatφ2 6= φ1: φ̄ exhibits
a jump, φ1 → φ2, at the transition point, and gives rise to the discontinuity of the first
derivative of the ground-state energy. A second-order phase transition results from the
coalescence of the above physical roots,φ1 tends toφ2 (the stationarity condition has a
degenerate solution).

In order to derive explicitly the criticality condition, we specify the system symmetry
(which is broken in the ordered phase) by introducing the unitary operatorT̂ ,

|φ〉 → |φ′〉 = T̂ |φ〉 (3.3)

which commutes with the Hamiltonian, [T̂ , Ĥ ] = 0. The unitary transformation (3.3) leaves
the moments of the Hamiltonian invariant,

〈φ′|Ĥ n|φ′〉 = 〈φ|Ĥ n|φ〉. (3.4)
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Without any loss of generality, it is convenient to parametrize the set of trial functions in
such a way that it holds thatφ′ = −φ. Consequently,EL({J }, φ) = EL({J },−φ) and the
stationarity condition (3.1) is always satisfied atφ = 0. Seeing that|φ = 0〉 is the eigenstate
of T̂ , φ̄L = 0 is the physical gauge in the whole disorder region whereEL({J }, φ) exhibits
the minimum atφ = 0. This minimum changes to the local maximum just at the critical
point, determined by the criticality condition

∂φφEL({J c}, φ)|φ=0 = 0 (3.5)

with {J c} being the critical values of{J }. The stationarity rootφ = 0 is three-fold
degenerate at the critical point, and the conjugate physical solutionsφ̄L,−φ̄L (providing
identical minima ofEL) split continuously from 0 inside the ordered phase region.

To calculate explicitly the classical singularities of ground-state quantities, we generalize
the definition ofEL by introducing the order-parameter operatorŝ, satisfying T ŝ|φ〉 =
−ŝ| − φ〉 and coupled to a symmetry-breaking fieldh, into the Hamiltonian

Ĥ → Ĥ ({J }, h) ≡ Ĥ ({J })− hŝ. (3.6)

The correspondingEL({J }, h;φ) possesses the evident symmetry property

EL({J }, h;φ) = EL({J },−h;−φ). (3.7)

The spontaneous order parameter per site and the zero-field susceptibility are given by

sL({J }) = lim
h→0+

d

dh
[−EL({J }, h; φ̄L)] (3.8a)

χL({J }) = lim
h→0+

d2

dh2
[−EL({J }, h; φ̄L)] (3.8b)

respectively, whereφ̄L = φ̄L({J }, h) is the physical stationarity root on the extended
parameter space.EL({J }, h;φ) is an analytic function of its arguments everywhere,
including the critical region. With respect to the criticality condition (3.5) and the symmetry
relation (3.7), its Taylor expansion around the critical point({J c}, h = 0, φ = 0) in powers
of dJ = J − J cL, h, φ, reads

EL({J }, h;φ) = EL({J c}, 0; 0)+
∑
n

(∂JnEL)|c dJn

+ 1
2!

∑
n,m

(∂JnJmEL)|c dJn dJm + (∂hφEL)|chφ

+ 1
2!

∑
n

(∂JnφφEL)|c dJnφ
2+

∑
n

(∂JnhφEL)|c dJn hφ

+ 1
4! (∂φφφφEL)|cφ4+ 1

3! (∂hφφφEL)|chφ3+ . . . (3.9)

where the symbol|c means that the derivatives should be taken at the critical point. We have
omitted in (3.9) all terms of orders higher than(dJ )2 or h, regarding the leading classical
singularities ofφ, φ ∼ (dJ )1/2 for h = 0 andφ ∼ h1/3 for dJ = 0 (see the next text). For
h→ 0, the application of the stationarity condition (3.1) to (3.9) results in∑

n

(∂JnφφEL)|cdJnφ + 1
3! (∂φφφφEL)|cφ3+ . . . = 0. (3.10)

Besides the trivial (disorder) solutionφ = 0, equation (3.10) implies two singular ones

φ
(1,2)
L ' ±

[
−6

∑
n(∂JnφφEL)|c dJn
(∂φφφφEL)|c

]1/2

. (3.11)
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They become physical in the symmetry-broken phase, characterized by the positivity of the
expression in the square bracket. The prefactor sign is put to be identical to that of the
vanishing fieldh in order to minimizeEL. According to (3.8a), the leading singular part of
the spontaneous order parameter takes the form

sL ' −(∂hφEL)|c
[
−6

∑
n(∂JnφφEL)|c dJn
(∂φφφφEL)|c

]1/2

. (3.12)

As concerns the susceptibility (3.8b), it can be written as

χL({J }, h) = −
(
∂h + ∂φ̄L

∂h
∂φ

)(
∂h + ∂φ̄L

∂h
∂φ

)
EL({J }, h, φ)

∣∣∣∣
φ=φ̄L

. (3.13)

The derivative ofφ̄L with respect toh is deducible from its implicit definition∂φEL|φ=φ̄L= 0,

∂φ̄L

∂h
= − ∂hφEL

∂φφEL

∣∣∣∣
φ=φ̄L

. (3.14)

Consequently, the singular part ofχL reads

χL ' (∂hφEL)2
∂φφEL

∣∣∣∣
φ=φ̄L

. (3.15)

For h = 0 and in the disorder region(φ̄L = 0) close to the critical point,

(∂hφEL)|φ=φ̄L = (∂hφEL)|c + . . . (3.16a)

(∂φφEL)|φ=φ̄L =
∑
n

(∂JnφφEL)|c dJn + . . . (3.16b)

so that

χdisorder
L ' (∂hφEL)2|c∑

n(∂JnφφEL)|c dJn
. (3.17)

In the symmetry-broken phase,

(∂φφEL)|φ=φ̄L =
∑
n

(∂JnφφEL)|c dJn + 1
2! (∂φφφφEL)|cφ̄2

L + . . . . (3.18)

Settingφ̄L = φ(1,2)L (3.11), we finally find

χorder
L ' −1

2

(∂hφEL)2|c∑
n(∂JnφφEL)|c dJn

(3.19)

i.e. when approaching the critical point from disordered and ordered phases, the respective
divergent parts ofχL differ from one another only by anL-independent constant (note that
the minus sign in (3.19) ensures the positivity ofχL—the deviations dJn have opposite
signs in the disordered and ordered regions). This fact and the value of the proportionality
constant are consistent with the prediction of the renormalization group [12]. We add that
the above extraction of the leading classical singularities is formally similar to the one
presented in [13] for statistical systems (we refer the reader to this work for the physical
interpretation of the gauge parameter as an effective field).
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Figure 1. The plot of the ground-state energy versus the gauge parameterφ for the transverse
Ising model on the square lattice; for details see the text.

4. Numerical results

We have performed the computations for the quantum TIM, defined by the Hamiltonian

Ĥ (J ) = −J
∑
(n,m)

σ znσ
z
m −

∑
n

σ xn (4.1)

and formulated on the 2D square, triangular and 3D simple cubic lattices;(n,m) denotes
the nearest-neighbour couples of lattice points. Suzuki [14] proved the equivalence of
the ground-state singularities of the TIM (4.1) formulated on aD-dimensional lattice
to the singularities of the free energy of the classical spin-1

2 Ising model in (D + 1)
dimensions. The order parameterŝ is equal to

∑
n σ

z
n , the symmetry-broken phase

corresponds to the ferromagnet and the symmetry operatorT̂ transforms each site-vector
an|σ zn = 1〉 + bn|σ zn = −1〉 to an|σ zn = −1〉 + bn|σ zn = 1〉. The trial function is proposed
simply as a direct product of one-site vectors

|φ〉 = ⊗
n

1√
1+ e2φ

(
1
eφ

)
= ⊗

n

1√
1+ e2φ

(|σ zn = 1〉 + eφ|σ zn = −1〉). (4.2)

The parametrization ensuresT̂ |φ〉 = | − φ〉.
Within the improved inverse method (formula (2.14)), we have expressed the functional

dependence of the ground-state energy densityEL(J, φ) up to theL = 8 (square lattice) and
L = 7 (triangular, simple cubic lattices) approximation orders. For the case of the square
lattice andL = 7, the plot ofE7 as a function of the gauge parameterφ is drawn in figure 1
(we recall thatEL(φ) = EL(−φ)): the broken curve corresponds to the disorder regime with
the local minimum atφ = 0, the full curve corresponds to the symmetry-broken phase with
the local maximum atφ = 0 and the local minimum atφ 6= 0. The figure also documents
the plateau structure ofE close toφ = 0; for φ greater than one the function exhibits
singularities and oscillates uncontrollably.

The critical values of the coupling{J cL}, obtained with the aid of the criticality condition
(3.5), are summarized in table 1. It is seen that by increasing the approximation orderL the
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Table 1. The critical values of the couplingJ cL and the prefactors̄sL, χ̄L to the classical
singularities (equations (4.3a) and (4.4a)) obtained at the approximation orderL for the transverse
Ising model defined on various lattices.

L JcL sL χL

2D square lattice
3 0.301 203 117 3.123 510 065 0.368 996 739
4 0.305 572 205 3.284 269 318 0.393 738 999
5 0.308 704 467 3.366 451 062 0.413 824 307
6 0.310 870 522 3.438 583 050 0.430 055 617
7 0.312 497 360 3.499 848 315 0.443 807 786
8 0.313 788 767 3.554 125 659 0.455 902 538

2D triangular lattice
3 0.198 215 145 4.115 881 328 0.257 849 690
4 0.198 746 068 4.154 095 606 0.263 349 076
5 0.200 045 884 4.237 156 162 0.274 295 288
6 0.200 965 334 4.312 717 281 0.283 075 332
7 0.201 668 869 4.379 999 768 0.290 557 008

3D simple cubic lattice
3 0.187 204 7784 3.680 359 9162 0.211 564 524
4 0.188 477 8323 3.755 274 4284 0.217 893 088
5 0.189 212 3943 3.788 458 6549 0.221 860 256
6 0.189 731 8966 3.819 677 8071 0.225 068 181
7 0.190 110 4969 3.845 186 9490 0.227 621 329

couplings{J cL} tend systematically to their asymptotic value, which indicates the canonicality
of the approximation series. For comparison, the CMX method (formula (2.5)) applied to
the square lattice gives the resultsJ c1 = 0.25, J c3 = 0.301, J c5 = 0.231, etc—an evident
loss of the canonicality property in the CMX format. To find the asymptotic value of
the coupling constant limL→∞ J cL = J c, we have fitted data by the third-order polynomial
J cL = J c + a1/L+ a2/L

2+ a3/L
3 (hereinafter, the lowest-orderL = 3 points, lying too far

from the true critical region, are excluded from the standard least-square fits). The values of
J c obtained for the considered lattices are presented in table 2, together with the estimates
of various methods. The errors are guessed from other 1/L fittings of {J cL}-data, namely
the first- and second-order polynomial fits, the power fit.

The formulae describing the classical singularities of the order parameter (3.12) and of
the susceptibility (say in the disorder regime, equation (3.17)) now take the form

sL ' s̄L(J − J cL)1/2 (4.3a)

s̄L = −(∂hφEL)|c
[
−6(∂JφφEL)
(∂φφφφEL)

∣∣∣∣
c

]1/2

(4.3b)

(J > J cL), and

χdisorder
L ' χ̄L 1

(J cL − J )
(4.4a)

χ̄L = − (∂hφEL)
2

(∂JφφEL)

∣∣∣∣
c

(4.4b)

(J < J cL), respectively. Here,EL is defined on the extended parameter space of the
Hamiltonian Ĥ (J, h) ≡ Ĥ (J ) − h∑n σ

z
n . The numerical values of the prefactors to the
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Table 2. A comparison of the present results for the critical coupling with indicesβ, γ of the
transverse Ising model with: WC = weak-coupling series, SC = strong-coupling series, FS =
finite-size scaling; (b) = biased, (ub) = unbiased.

J c β γ

2D square lattice
WC [15] 0.329(1) — 1.25(2)
SC [16] (ub) 0.328 50(4) — 1.245(3)
(b) 0.328 50(4) — 1.244(3)
FS [17] 0.328(1) — 1.24(2)
CAM [4] 0.327(4) — 1.25(8)
Present work 0.326(3) 0.35(2) 1.27(4)

2D triangular lattice
WC [15] 0.2098(2) — 1.250(12)
SC [16] (ub) 0.209 72(2) — 1.242(2)
(b) 0.20972(2) — 1.241(3)
FS [17] 0.2098(2) — 1.236(8)
Present work 0.207(3) 0.37(3) 1.24(3)

3D simple cubic lattice
WC [18] (ub) 0.19406(6) 0.43(2) 1.17(6)
(b) 0.19406(6) 0.425(7) 1.11(5)
SC [18] (ub) 0.1940(4) — 1.08(2)
(b) 0.1940(4) — 1.086(8)
Present work 0.192(1) 0.45(1) 1.09(2)

classical singularities̄sL, χ̄L are presented in table 1. According to the CAM [1, 2], they
are presumed to exhibit the anomalous behaviour

s̄L ∼ (J c − J cL)−1β (4.5a)

χ̄L ∼ (J c − J cL)−1γ (4.5b)

as J cL → J c. The exponents−1β and1γ represent the respective corrections to the
classical critical indices12 and 1:

β = 1
2 −1β (4.6a)

γ = 1+1γ. (4.6b)

Figures 2 and 3 show in the logarithmic scale that our data closely follow very well the
linear fitting predicted by the coherent-anomaly formulae (4.5a) and (4.5b). The results
for the non-classical values of exponentsβ and γ are tabulated in table 2; the errors
are yielded by the previously discussed uncertainty in the determination ofJ c (the errors
coming from the numerical differentiation and from the standard deviation of the data fitting
turn out to be one order lower). We also present the estimates ofβ, γ, obtained by other
methods for comparison. The best results are provided in general by the extrapolation of
series [15, 16, 18]. The last are restricted to the susceptibility expansion for which a simple
perturbation algorithm has been established. We see that our estimates lie near the best ones,
their deviations being similar to those of the CAM results [4] when available (the critical
point and the critical exponent are determined simultaneously there; when the critical point
is determined independently the exponents are estimated with higher accuracy [19]).

Dimension three is the upper critical dimension for the considered quantum TIM, beyond
which the critical behaviour is that of mean-field theory and there holds1β = 1γ = 0.
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Figure 2. Magnetization prefactors̄sL versus(J cL−J c)/J c in the logarithmic scale for the square
( � ), triangular (4) and simple cubic (◦) lattices (data for̄sL have been uniformly scaled for
every lattice structure in order to locate them in the same graph). Full lines correspond to
the linear fits (the lowestL = 3 data are excluded from fittings), their slopes determine the
correction to the classical indexβ = 1

2 .

Figure 3. The same as figure 2 for the susceptibility data.

According to field-theoretical studies of theφ4-model in four dimensions [12], the mean-field
critical behaviour is modified by confluent logarithmic corrections. The(3+1)-dimensional
TIM is expected to exhibit similar critical properties. Like for instance, the singular part of
the order parameter is predicted in the form

s ∼ (J − J c)1/2[− ln(J − J c)]1/3 for J → J c + . (4.7)

We have put1β = 0 and fitted the growth of the prefactorss̄L according to the expected
coherent-anomalȳsL ∼ [− ln(J c − J cL)]ω. The resultω = 0.27 agrees with the predicted
value at a reasonable level of accuracy.
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5. Concluding remarks

In the present paper, we have put thet-expansion technique into an efficient mean for
investigating, in combination with the idea of coherent anomaly, the non-classical critical
properties of quantum systems in the ground state. The results for the TIM indicate a high
reliability of the method which has some relevant advantages:

(1) in contrast to the conventional cluster approaches where the cluster size is equal to
LD at the approximation orderL, the complexity of the connected-moment graphs grows
very slowly with increasing spatial dimensionD (connected graphs having the origin in
dimensions< D, with adjusted topological factors, are dominant);

(2) it is possible to explicitly extract the singular parts of the ground-state quantities.
These are the main reasons why we were able to take into account larger clusters in

higher dimensions without extensive computational efforts. We believe that the suitability
of the method in higher dimensions permits one to attack some fundamental problems, for
example, the phase structure of 2D strongly-correlated quantum systems, to answer whether
the universality is restored in two dimensions for the XYZ Heisenberg model and so on.
These are our tasks for the future.
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